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We consider the relaxation to equilibrium of a spatially uniform Maxwellian 
gas, We expand the solution of the nonlinear Boltzmann equation in a truncated 
series of orthogonal functions. We integrate numerically the equation for non- 
isotropic initial conditions. For certain simple conditions we find interesting 
proximity effects and other transient relaxation phenomena at thermal energies. 
Furthermore, we define a resummation of the orthogonal expansion which is 
more convenient than the original o,e for the numerical analysis of the 
relaxation process. 

KEY WORDS: Boltzmann equation; nonisotropic initial conditions; Maxwell 
molecules; moment equations; numerical calculations. 

1. I N T R O D U C T I O N  

We consider a spatially uniform gas of structureless particles which interact 
through binary elastic collisions. We look for the corresponding one-par- 
ticle distribution function f (p ,  t). Its temporal evolution is characterized by 
the nonlinear Boltzmann equation. Research on this equation was induced 
by the lack of an explicit solution for the associated initial and boundary 
value problems. A great variety of interaction models considered in the 
literature give insight into this Cauchy problem3 ~'2) Maxwell models 
provide a large simplification of the Boltzmann equation. For these models 
the collision probability depends on the scattering angle and not on the 
relative momentum. In this case the general solution is known for isotropic 
initial conditions within a certain Hilbert space. It is given as an 
orthogonal polynomial expansion, with time-dependent coefficients which 
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obey a solvable coupled set of nonlinear equations. (2) This isotropic 
solution has been extensively studied by analytical resolution of the 
coupled system up to some order and the numerical evaluation of the 
resulting truncated series. Many relaxation phenomena have been found 
from this numerical analysis. The Tjon overshoot phenomenon, the 
oscillatory relaxation to equilibrium, and other proximity effects have 
demonstrated that the orthogonal expansion is very suitable for the 
numerical analysis of the Boltzmann equation. (2/ 

Research on the exact time-dependent solutions of the Boltzmann 
equation has been mainly limited to isotropic velocity distributions. The 
analysis of the anisotropic case has been put aside in view of its complex 
mathematical structure. Besides a few pioneering works, (3'4) little has been 
done toward solving this problem. For instance, a numerical study is 
lacking. Recently the orthogonal expansion of the distribution function has 
been generalized to include nonisotropic initial conditions. (5/This has been 
done by using spherical coordinates, and finding a recursively soluble set of 
equations for the corresponding generalized moments. Previous 
methods (6'7) which use tensorial moments with multiindices are rather 
elegant, but inadequate for a numerical analysis. 

In this paper we develope a analysis of the nonlinear Boltzmann 
equation in a two-dimensional velocity space, for nonisotropic initial con- 
ditions. The solution is represented by a truncated expansion in orthogonal 
functions (Section 2). This procedure is restricted to moderate values of the 
energy, where not too many terms in the series are required. However, we 
are able to show different relaxation features for the anisotropic case in 
Section 3. We generalize the criterion of Hauge ~8) and Alexanian, (9) for- 
mulating conditions on the initial distribution function which determine the 
basic features of the final approach to equilibrium. In Section 4 we resum 
the expansion in orthogonal functions and obtain a different representation 
of the distribution function, which can be more convenient than the 
original one for numerical studies of the relaxation process. We conclude 
with a discussion of the results. 

2. GENERAL SOLUTION OF BOLTZMANN EQUATION 

The spatially uniform nonlinear Boltzmann equation in d dimension 
is (2) 

f g  h ' ~ t f ( p , t ) =  m a ( g , ~ .  ) [ f ( p , t ) f ( p l  t) 

- f(p, t) f(p~, t)] dh dp~ (2.1) 
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The incoming and postcollisional momenta are related by the dynamics 

P' = �89 + Pl ) -- �89 IP - Pl In (2.2a) 

P'I = l ( p  + P l  ) -}- 1 IP - -  P l  [ /~ ( 2 . 2 b )  

g = P l  - P  and g ' =  P'I - P '  are the relative momenta of the particles before 
and after the collision with cross section a(g, ~. ~), and r~ is a unit vector in 
the direction of g'. 

The H theorem guarantees that f (p ,  t) approaches its equilibrium 
value for large times: 

exp (2.3) f (p ,  t)--t~ o0 ' fo(P) = (2~zrnkT)d/2 2m-kT 

where r/ is the number density and k is Boltzmann's constant. The tem- 
perature T defines the average energy per degree of freedom. The temporal 
evolution of the gas is observed from the center-of-mass reference frame. 

The purpose of this work is to tackle the anisotropic Boltzmann 
equation for an interaction model with a momentum-independent collision 
probability (Maxwell model): 

ga(g, ~.t /)  = ~(~. ~) (2.4) 

Here we will analyze the two-dimensional case d =  2. The more com- 
plicated three-dimensional case has similar characteristics. (5) 

The distribution function can be expanded in a nonisotropic Laguerre 
series, (5) when its moments exist: 

f (p,  t )= fo (p ) [1  + R(e, 0, t)] (2.5a) 

R(e, O, t)= ~ ~ Cnq(t) Rnq(e, O) (2.58) 
n--1 q=O 

with 0 the polar angle of the momentum p, and e = p2/2mkT the energy per 
thermal unit. The functions 

R~q(e'O)=(-1)I"+'2q-"')/2(n-12q-nl) 

X ~ (12q-nl)/2 L 12q nl ei(2q n)O 
(n-12q-n])/2(~) 

form a complete set in a Hilbert space ~ with norm 

{2.6) 

HRII2= f e-~lR(g, O)t 2 de dO (2.7) 
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They are orthogonal in the following sense: 

f e ~R*q(~, O) R~,q,(e, O) de dO 

= 2rr ( .n + 12q - 12q - 2 nl ) ,  ( . n - .  2 n") !6n"'6qq' 
\ 

(2.8) 

The coefficients Cnq are generalized moments of the distribution function, 

1/~ 
Cnq(t) = [(n + q2q - nl)/2]! [(n - IZq-  nl )/2]! 

0) 2. ,29, 

Conservation of particles, momentum, and energy requires 

Coo(t) = 1 (2.10a) 

C10( / )  = C l l ( t  ) = C21( / )  = 0 ( 2 . 1 0 b )  

Since R(e, 0, t) is a real-valued function, 

Substituting expansion 
equations for the moments Cnq(t), (5) 

Coo(t) = 1 

G Q ( t )  = G ~ ( t )  = 0 

C2e( t) = C2e(0 ) e-  A2Q ' 

C3Q(t) = C3Q(0 ) e A3Qt 

t N- -2  
CNQ(t)=CN~?(O) e ANQ,+f e ANe(t ~) ~, 

oo 

with 

X Cnq(T ) CN_n,Q_q(~)  d~ 

Cnq(t)=C*,n q(t) (2.11) 

(2.5) into Eq. (2.1), we obtain a recursive set of 

ql 
( - - l ) q ]  jNQ 

n=2 q=qo 

(2.12a) 

(2.12b) 

(2.12c) 

(2.12d) 

(2.12e) 

qo = max(0, Q - N +  n) 

ql = rain(n, Q) 

(2.13a) 

(2.13b) 
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The real coefficients #~o are given by 

gNO=qf]"~(cpsO)[cos~IN--~Isin~]" 

xexp{i(Q--~N) O+n2]}dO (2.14) 

and ANO are the eigenvalues of the linearized Boltzmann equation, 

ANQ = P~176 + CSN0) -- #gQ -- ( --1 )Q#NQ 

2 [ 

Equations (2.5) and (2.12) provide the general solution for the two-dimen- 
sional Maxwell models. Several authors have investigated these 
solutions, (5't~ finding sufficient conditions for the existence and absolute 
convergence of the expansion (2.6). 

For isotropic initial conditions Eq. (2.6) reduces to the known 
Laguerre series (2) 

f (p ,  t )=  fo(P) 

where the moments c~ satisfy 

with 

en(t) L. (2.16) 
tT~O 

co(t) = 1 (2.17a) 

c l ( t ) = 0  (2.17b) 

[ ; o n  l ,] cn(t)=e ;.or cn(0)+ e;nT ~ #nmCm(r) Cn m(r dr (2.17C) 
m = l  

( - 1 ) "  c~(t) = n----~. C2"n(t) 

)~, = A2n,n 

(2.18) 

(2.19) 

(2.20) 
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Comparison of Eq. (2.14) with Eq. (2.20) shows that the anisotropic coef- 
ficients #fro can be obtained from the corresponding isotropic coefficients 
#rim 

#,NQ= [sgn(2Q_N)}n ~ 2m-n  Jkm (--l)m 
m=m o 

X # ( N +  12Q N])/Z,m (2.21a) 

~-n+l 7 
mo = k---f-- j (2.21b) 

[ '2Q-NI+n]  (2.21c) 
m l =  2 

where IX] is the largest integer less than or equal to X and sgn(X) is -1  
when X is negative or + 1 when X is positive or zero. The particular 
features of a Maxwell model are resummed in the corresponding set of 
coefficients #nm. 

From Eq. (2.14) the following symmetry for the anisotropic coefficients 
is obtained: 

#NQ ( - - 1  n N N Q = ) #. '  (2.22) 

Therefore 

ANO = AN,N_ o (2.23) 

When ~(x)= c~(-x) we have 

#NO = (_1)0 #~0_~ (2.24) 

The eigenvalues ANO can be written down in terms of Chebyshev 
polynomials of the first kind, 

f/ I ANO = tl dO ~(cos 0) 1 + 6N0 

(COs~)NTI2Q (COS ~ ) ( s i n  ~) N Ni (sin ~ ) ]  (2.25, 
- -  N I  - -  _ Ti2 Q 

By substituting the explicit expression of Tn(x), ~ 

{n/23 
Tn(x)= ~ a,,,,,x "-2m (2.26a) 

m - - 0  

nF(n-- m) 2 '~ 2m-- 1 (2.26b) anm = (--1)m rn! ( n -  2m)! 
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it is possible to relate ANQ to the corresponding isotropic eigenvalues )~, 

[12Q -- N]/2] 

ANQ = 2 a12 Q - NI,m /~(120 - N ]  + N)/2 -- m (2.27) 
m~O 

Then 

AN, f-N/2] = A N , [ ( N +  1)/2] = 2 [ ( N +  1)/2] (2.28) 

Furthermore, the recurrence relation for the Chebyshev polynomials leads 
to 

2 A N + I , Q = A N Q + A N ,  Q l ;  Q r  N +  1 (2.29) 

This recurrence equation shows that the relation 322 = 223 of the isotropic 
case leads to the folowing multiple degeneracy: 

3A31 = 3A32 = 3A42 = 2As2 = 2A53 = 2A63 (2.30) 

3. N U M E R I C A L  C A L C U L A T I O N S  

Expressions (2.5) and (2.12) give the general solution of the non- 
isotropic two-dimensional Boltzmann equation for Maxwell models, 
provided the series converges. By using the fact that the moments Cuo(t) 
are a sum of exponential transients, namely CNQ(t)=~, a,e b~, we can 
formally define 

CNQ(t)=~( blal b2bZ"b~), as (3.1) 

with b~ < b,,+l. Therefore, operations between moments reduce to simple 
algebraic matrix calculations. For instance, integration is given by 

oCNO('C) d~ ~" a] al a, (3.2) 

V = l  bj bl 

This idea enables us to develop an algorithm for calculating each moment 
CNO up to N >  30. 

We test the precision of our numerical method through the BKW 
mode,(~o, 13) 

1 1 - -  ; e = - -  
J ( p ,  t)= f(p) 1 - a  - ~ - a  1 -or 2mkT 

a(t) = ~r(0) e-~42'/2; 0 ~< a(0) ~< 1/2 

(3.3a) 

(3.3b) 
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which is the only known  exact nontrivial  solution. The size of the relative 
error in the evaluat ion of  the moments  CNQ(t ) is smaller than l0 -12. 
Furthermore ,  we have evaluated the relative error for various values of 
energy and time. Figure 1 shows the relative error of our  numerical  results 
for a B K W  solution with o-(0) = 0.25 for the T j o n - W u  interaction model,  (2) 

c((# �9 h) = (/~/4t/) [ 1 - (~.  h) 2 ] l/2 (3.4) 

The t runcat ion order  N was arbitrarily fixed at N O = 12. We see that  even 
at t = 0 the errors are less than 1% for energies below e = 20. The energy 
range where it is possible to attain a good  approximat ion  is one or two 
orders above the thermal  range ~ ~ 1, and it increases almost  linearly with 
time. 

As a first example, we will consider a class of initial distributions with 
few nonvanishing moments ,  as in t roduced by Barnsley and Cornille (14) for 
the isotropic case. We shall generalize this class of  solutions for the 
anisotropic case. The greatest difficulty with an initially t runcated momen t  
expansion 

N 

0, 0)= Z 0) (3.5) 
n = l  q--O 

105 / I I I ///z't" .~t'/ll 
#t = 0 // 

_ / / B  r /C ! 

1 ~ 

i /, 

10-101 
0 10 20 30 40 50 

E 
Fig. 1. Relative error for the numerical evaluation of the BKW mode with a(0)= 0.25 and 

the Tjon Wu interaction model. The truncation order is N o = 12. 
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is to guarantee its positivity 1 + R(e, 0, 0)~> 0. For large values of energy 
Rnq oc gn and 

R(~, O, O) ~ ~N ~ Cnq(O)ei(2q n)O; ~ >> 1 (3.6) 
q--O 

Then the positivity condition requires, besides an even truncation order, 
the presence of an angle-independent term with moment 

CN, N/2(O) >1. ~ ICNq(O)l (3.7) 
~ '2q= o 

This condition ensures that the high-energy tail is initially positive and 
overpopulated; but it does not guarantee the positivity at lower energies. 
However, when all moments are null, R(e, 0, 0 ) = 0 ,  and we can always 
choose CNq(0) sufficiently small in order to satisfy the positivity condition. 
The simplest anisotropic initial condition is given by 

R(e, O, O) = CN, N/2(O) RN, N/2(g, O) 

+ cn~(o)l-R~(~, o) + RL(~, 0)3 (3.8) 

We have arbitrarily chosen C,u(0 ), with any n ~< N and q r N/2, as a real- 
valued and positive constant, through a change of the angular phase. Now 
condition (3.7) reads 

CN, N/2(O ) > 2~,~.,, C,,q(O) (3.9) 

When C,,q(0)=0 this "simple anisotropic" (SA) solution reduces to the 
isotropic fundamental positive solution of Barnsley and Cornille. Condition 
(3.9) ensures that the high-energy tail is initially overpopulated. Further- 
more, this SA initial condition has a 12q-nl-order rotational symmetry. 
The evolution of the distribution function has to conserve this symmetry. 
Then moments Cn,q, with 12q'-n ']  multiple of ]2q-h i  (or zero) can be 
populated. These, initially real, moments must remain real at all times. This 
condition is intimately related to the conservation of a reflection symmetry. 

For N = 2  there is no such simple initial condition in view that 
C2~(t) = 0. For N =  4 there are some SA solutions, for instance, 

R(e, 0, 0) = 2C42(0) L~ - 2C4,(0) eLZ(e) cos(20) (3.10a) 

C42(0) ~ -  0.16; C41(0 ) = 0.04 (3.10b) 

This initial SA distribution function displays an underpopulated ring 
at 1 < e < 4, as shown in Fig. 2. The evolution of this energy region was 

822,'45/3-4 13 
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Fig. 2. 

1 

3 

oE0 

0 

-2 
o~ 

-1 

0 

2 

Initial deviation from the equilibrium R(e, 0, 0) for the simple anisotropic solution 
(3.10). The momentum is indicated in reduced units p/(mkT) 1/2. 

calculated via Eq. (2.5) truncated at No = 32 for various times and two dif- 
ferent angles. Numerical convergence was found to be particularly good in 
the sense that small variations of the truncation order No do not alter 
significantly the previous results. At 0 = 0  ~ the distribution function 
exhibits a monotonic approach toward equilibrium. However, an 
interesting relaxation phenomenon occurs at 0 = 90 ~ (Fig. 3): As time elap- 
ses, the high-energy tail turns over the underpopulated region, leading to a 
transient overpopulation effect at thermal energies. This "proximity" effect 
was first observed by Barnsley and Cornille for an isotropic fundamental 
positive solution. (14) 

In view of their simplicity, the SA solutions are quite adequate to 
analyze the characteristic features of the relaxation to equilibrium. The dis- 
tribution function may relax toward equilibrium monotonically, or display 
a nonmonotonic behavior. Furthermore, these monotonic relaxation and 
transient overpopulation and depopulation effects may occur 
simultaneously for different angles for a given initial distribution function 
and even for the same energy. This is shown in Fig. 4 for the following 
combination of two SA solutions: 

R(e, O, O)= - - 2  [-6L~ x//~- L'I(/;)COS 0 -  gL12(g) cos  20] (3.11) 

For  e = 6.2 this distribution function exhibits simultaneous transient under- 
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0.50 
e = o  o r i I I I I  / 

0.25 

o.oo ~-~~ 

0.00 = co 

-0.50 / I I I I 
0 1 2 3 z, 

E-e-  

f 
~-0.25 

CU 

r-,-" -0.50 

Fig. 3. Deviation from equilibrium R(s, 0, t) for the initial condition of Fig. 2 with the 
T jon-Wu interaction model. 

Fig. 4. 

0.10 
I I ~ 1  g : 6 . 2  

0.05 \ e = 18 o_ ."~..,...~ 

~- o.oo 

n.- 

- 0.05 

-0.10 I / I I 
0 2 z, 6 8 

~ t - - ~  

Time evolution of R(~, 0, t) for ~=  6.2 and different values of the angle in the 
T jon-Wu interaction model. The initial condition is given by Eq. (3.11 ). 



552 Barrachina and Garibotti  

population and overpopulation effects at 0 = 0  ~ and 125 ~ respectively. 
Furthermore, it displays a monotonic relaxation from above at 0---180 ~ 
and from below at 0 = 9 0  ~ These phenomena show quite clearly the 
increasingly complex features of the anisotropic relaxation process in com- 
parison with the relatively simple isotropic situation. (15/ 

It is worthwhile to analyze the dependence of the final approach to 
equilibrium upon the preparation of the initial distribution function. 
Expansion (2.5) provides a useful hint: At large times the dominant con- 
tribution to expansion (2.5) is given by the slowest decaying moments, 
namely 

R(s O, t) ,~ e -A3tt{2C42(O) L~ 

-I- [C31(O)ei~ i ~  (3.12) 

Then the relaxation to equilibrium is determined by the sign of the function 
in the curly brackets. For a large fixed value of the energy, 

R(e, O, t )~  e-A3,, C42(0)e2 (3.13) 

and the well-known criterion of Hauge (8) and Alexanian (9) is obtained: At 
large values of the energy, the relaxation to equilibrium will be from above 
or below, depending on whether C42(0 ) is positive or negative, respectively. 
This criterion also can be applied to the anisotropic case. Furthermore, the 
final approach to equilibrium of the high-energy tail is independent of the 
angle variable when C42(0) is nonvanishing. Actually, the SA distribution 
function of Fig. 2 is characterized by a positive C42(0) moment and a 
monotonic overpopulated approach to equilibrium is obtained at large 
energies. In general the positivity condition (3.7) for a SA solution with a 
nonzero C42(0) moment leads to an overpopulation approach to 
equilibrium of the high-energy tail. When C42(0) is null, the criterion 
applies to the slowest decaying nonzero moment. For instance, the final 
approach to equilibrium of an initial condition given by C31(0) = C32(0) = 
C63(0) = 1/30 is controlled by the moment C31(0). This is consistent with 
the purely anisotropic relaxation behavior displayed in Fig. 5: At 0 = 0 ~ the 
third zero of R(e, O, t) evolves toward the right, leading to a transient 
underpopulation effect. On the other hand, the high-energy tail displays a 
monotonic overpopulated approach to equilibrium at 0 = 180 ~ At 0 = 90 ~ 
the n = 3 terms are null and the n = 6, q = 3 term dominates the monotonic 
time evolution. 

4. MODIFIED LAGUERRE EXPANSION 

The simple anisotropic solutions studied in Section 3 show that the 
momentum expansion (2.5) has a good convergence for initial distribution 
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Fig. 5. Deviation from equilibrium in the T j o n - W u  model for an initial condition (3.5) with 

C3~ = C32 = C63 = 1/'30. 

functions overpopulated at high energies. We have shown that in that case, 
as the BKW mode, the expansion (2.5) converges in a large energy range. 
However, the situation is particularly difficult when we analyze the 
relaxation features of a distribution function with a scarce high-energy tail. 
This follows from Eq. (3.6), which shows that the truncated expansion 
gives an approximation overpopulate at high energies. Therefore, it is 
necessary to improve the convergence, particularly for low values of time 
and high energies. Pad6 approximations are worthwhile techniques to 
improve convergence in the isotropic case. (~5'16) 

Another method is suggested by the BKW mode: A better description 
of a distribution function with an underpopulated high-energy tail will be 
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achieved when expansion (2.5) is multiplied by an adequate exponential 
weighting factor e x p [ - a e / ( 1 -  a)].  Such a factor would be useful at t = 0, 
but it may become a catastrophic hindrance for the series convergence at 
longer times. This difficulty may be solved by means of a time-dependent 
parameter o-(t). An appropriate choice of the asymptotic behavior of a(t) 
will enable a good approximate description of the relaxation toward 
equilibrium. This modified moment expansion was employed by several 
authors for the isotropic case. (2'9'17) It has been also found from an iterative 
solution of the BE for the VHP model. I18) Our purpose here is to introduce 
a similar anisotropic modified expansion. 

This goal could be achieved by the application of Bobylev 
symmetry (1~ to the Fourier-transformed distribution function, as in the 
isotropic case. (~) We shall use a straightforward approach. We rewrite the 
Laguerre expansion (2.5) as in the BKW mode, Eq. (3.3): 

e a~/(l a) 
f (p , t )= fo (p  ) -(~-~(-~ ~ ~ C~q(0) [1 -a ]  

n = 0  q=O 

x e ~/(l ~) R~q(e, O) (4.1) 

with a = a(t) an arbitrary function of time. The functions Rnq(c , O) satisfy 
the following property: 

(1 - a) e ~/(1 -~  Rnq(~, , O) 

- (1 _ a)~/2 (l_a)mm!R"+2m,q +m ~ _ a  '0 
m ~ O  

1 - o  n - o  

Replacing in Eq. (4.1) 

f(p,  t )=  fo(p) 

where 

(4.2) 

(4.3) 

7oo(t) = 1 ( 4 . 5 a )  

7 1 Q ( t )  = 0 (4.5b) 

y21(t) = a(t) (4.5c) 

Conservation of particles, momentum, and energy requires 

(n i2q--nl)/2 o.m 
)~,,q(t) = ~.  m---~. Cn 2re'q-re(t) ( 4 . 4 )  

m = 0  
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Actually, Eq. (4.3) represents a modified Laguerre expansion of the dis- 
tribution function. It reads 

with 

~ 7el(t) 
f(p,t)=f~2~o~(p) I + Z  l ~ [1-V21(t)] "/2 

= q = 0  

X ~nq 1 - -  ~ ) 2 1 ( l ) '  0 

f~(P) - 2rcmkT(1 - a) exp - 2mkT(1 - a) 

(4.6) 

(4.7) 

which is the equilibrium distribution function (2.4) with a modified tem- 
perature (1 - a) T. 

The coefficients ~)nq a r e  generalized moments of f(p, t): 

[ 1 - ::~ (t)]"/~ 1 

7"u(t ) -  [ ( n +  12q-n]) /2]!  [ ( n - - 1 2 q - n l ) / 2 ] !  q 

p2/2mkT, O) d2p (4.8) 
x f f(P' t) R"q(l_72,( t i  

with the following properties: 

~/n~(t) = * t 7 . . . .  u( ) ( 4 . 9 a )  

::.~(t) > ~.2. ~'~(~)" ,~ co . q----~- (4.9b) 

Inserting expansion (4.6) in Eq. (2.1), we obtain the following infinite set of 
equations for the moments: 

7o0(0 = 1 (4.10a) 

71Q(t) = 0  (4.10b) 

72Q(t) = 72Q(O)e A2e, 721(t) arbitrary (4.10c) 

73Q(t) =73Q(0) e A3Q, (4.10d) 

;o E YNQ(t)=-'TNQ(O)e A:~'QtJc e ANQ(t z) 721(T)])N_2, Q 1(T2 ) 

N 2 ql 1 q NQ ] 
+ Z ~ ( - )  /t. 7.q(r)7 N .,Q_q(r) dr (4.10e) 

n = 2 q ~< q0 
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This expression is an alternative representation of the general solution of 
the two-dimensional nonlinear Boltzmann equation for Maxwell models. 
The choice y2~=0 leads to the usual moment expansion (2.5). It is 
worthwhile to note that a criterion for a good choice of 721(0 < 1 has to be 
formulated. For  instance, the choice 72~(t)= a exp(-A42t /2)  for the initial 
condition 7xQ(t) = 0 for other N and Q is a simple exact solution, namely 
the BKW mode. 

Henceforth, we shall analyze the temporal evolution of an initially 
truncated modified Laguerre serie with only two nonvanishing moments. 
Such an initial condition is very suitable to applying the previous concepts. 
We choose 2721 = -4720 = -722 = 1, namely 

R(e, 0, 0 ) =  4ee-~[1 - c o s ( 2 0 ) ]  - 1 (4.11) 

This initial distribution displays two overpopulated peaks at e =  1 with 
0 = 9 0  ~ and 270 ~ respectively. It is underpopulated at high energies, in 
contrast to the SA distributions of Section 3. Furthermore, as 
C42(0) = - 1/8, the criterion of Hauge and Alexanian guarantees that the 
high-energy tail will display a monotonic relaxation to equilibrium from 
below. The temporal evolution of this distribution was numerically 
evaluated with the usual Laguerre expansion (2.5) truncated at No = 16. In 
Fig. 6 we show the absolute error of our numerical evaluation for the initial 
condition (4.11). This error is small in the region of interest e < 4. Actually, 
the energy range where the approximation is good increases with time. This 
ensures our conclusions. 

Figure 7 shows the distribution (4.11) at four different times, namely 
#t = 0, 1, 2, and 4. It displays quite clearly a new and interesting relaxation 

Fig. 6. 
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3 

Absolute error in the numerical evaluation of the initial condition (4.ll). The trun- 
cation order is No = 16. 
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Fig. 7. Time evolution of the deviation from equilibrium for the initial condition (4.11). The 
momentum is indicated in reduced units p/(rnkT) 1/2. 
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phenomenon: The overpopulated peaks show a preferential spread in 
angular direction, giving rise to a population ring at e = 1. This "preferen- 
tial spreading effect" may be interpreted as follows: the majority of the par- 
ticles are initially restricted to a very small region in momentum space with 
e ~  1. As time elapses, the energy and momentum conservation laws (2.3) 
tend to foce these particles to relax very slowly in energy, but with a fast 
angular spreading. 

5. C O N C L U S I O N S  

In the present paper  we have studied the two-dimensional in velocity 
nonisotropic Boltzmann equation for Maxwell interaction models. We 
expanded its solution in a truncated series of orthogonal  functions with 
time-dependent coefficients given by an analytically solvable set of 
equations. This orthogonal expansion is very suitable for the numerical 
analysis of the relaxation process, when restricted to moderate  values of the 
energy, where not too many terms are required. We showed interesting 
proximity effects and other transient relaxation phenomena. For instance, 
many transient overpopulation and depopulation effects may occur 
simultaneously for different angles at the same energy. The basic features of 
the final approach to equilibrium are determined by the criterion of Hauge 
and Alexanian for the isotropic case. However, a purely anisotropic 
relaxation proces may occur when the moment  C42(0) is null. Finally, we 
define a reummation of the orthogonal  expanion which can be more con- 
venient than the original one for the numerical analyis of the relaxation 
process. Even though most of our discusion is restricted to two-dimen- 
sional initial conditions, which represent the simplest anisotropic model, it 
is worthwhile to note that our numerical method can be applied to case of 
arbitrary dimension. 
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